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Multi-layered walls design to optimize building-plant interaction
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Abstract

In this paper the building envelope suitable for making easier the purpose of the air-conditioning plant to keep the indoor air tem
constant against impulsive external temperature excitation is investigated. For this aim two different criteria can be assumed: the p
minimization or the average time length maximization of the air-conditioning plant working step. Among all possible multi-layere
the symmetrical three-layered one, with the high heat capacity layer between two equal layers made of insulating material, turns o
excellent compromise fully satisfying the first criterion and, with good approximation, the second too. All the other usual walls, in p
the homogeneous single-layered ones, as well as the two-layered ones with the insulating layer disposed on the wall outer or inne
the three-layered ones with the insulating layer disposed in the mid-plane of the wall, have turned out to be distinctly worse.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

The determination of the most convenient sequenc
resistive and capacitive layers in the building envelo
requires a careful specification of the parameters to
optimized. If such parameters vary, the optimal struct
of the wall may remarkably vary too. In particular, in [1,
the building envelope which, in case of intermittent heati
minimizes temperature fluctuations and the energy requ
by the plant are defined; in [3–8] walls are investigated
order to optimize the decrement factor and time lag un
sinusoidal external thermal fluctuations.

A very interesting problem, relating to the buildin
plant interaction, is to determine the building envelo
walls, which minimize the air-conditioning plant workin
in order to keep the indoor air temperature constant aga
outdoor air temperature variations with given tempo
behaviour [9–15]. The solution, obviously, does not dep
on the geometrical and thermal properties of the build
interiors (e.g., floors and partitions), but only on the build
envelope walls.

In the case of sinusoidal external temperature fluctua
an approximate solution, in absence of air changes, is g
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in [9] and a fully developed analysis in [13], which we re
to for wide references.

In the case of impulsive external thermal excitation, t
different criteria can essentially be followed to make ea
the air-conditioning plant working: to minimize the pe
power [10] or to maximize the average time length [1
of the plant working step. This subject is investigated
this paper, where multi-layered distributed-parameter w
are schematized as a sequence of essentially resistive l
alternating with essentially capacitive ones. First of all,
time response of the air-conditioning plant working st
with particular reference to its peak power and average
length, has been determined. Later, the results are ap
to the simplest case of a lumped-parameter wall with pu
resistive layers alternating with purely capacitive ones.
lumped-parameter model results to be so relevant a
represents the best limit solution.

In this paper a dimensionless parameter, calledcoefficient
of performance, is introduced, which is able to quantify th
deviation of a real multi-layered distributed-parameter w
from the limit behaviour of the optimal lumped-parame
model and, thus, to characterize the wall in its interac
with the plant [14–17].

The performance of different walls, made of materi
commonly used in building, has been evaluated. In any c
the worst walls have turned out to be the homogene
and the simple two-layered ones; optimal performance
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Nomenclature

A, B walls used in the calculations (see Tables 1, 2)
c wall heat capacity . . . . . . . . . . . . . . . . J·m−2·K−1

cp specific heat at constant pressure . . J·kg−1·K−1

E, F , G, H elements of the wall transmission matrix
H five-layered lumped-parameter model

(see Section 2)
I material with essentially resistive thermal

properties
ID ideal three-layered lumped-parameter wall

(see Section 8)
Ie intensity of the impulse . . . . . . . . . . . . . . . . . . K·s
K five-layered lumped-parameter model

(see Section 6)
L material with essentially capacitive thermal

properties
£ Laplace transform linear operator
mj moment ofj -order (see Section 3)
M transmission matrix of the wall
p1, p2, p3, p4 dimensionless parameters, defined

in Eq. (31)
Q heat flux due to the air-conditioning

plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

r wall thermal resistance . . . . . . . . . . . m2·K·W−1

Rint inner surface thermal resistance . . . m2·K·W−1

Rext outer surface thermal resistance . . . m2·K·W−1

s = jω complex variable (j = √−1 )
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
Ti indoor air temperature . . . . . . . . . . . . . . . . . . . . K

Te outdoor air temperature . . . . . . . . . . . . . . . . . . . K
Tw wall inner surface temperature . . . . . . . . . . . . . K
x L material dimensionless fraction on the wall

inner face
z I material dimensionless fraction on the wall

outer face

Greek symbols

δ(t) Dirac delta function
�τ average time length of the air-conditioning plant

working step
ε coefficient of performance, defined in Eq. (30)
λ thermal conductivity . . . . . . . . . . . . W·m−1·K−1

φ(t) normalized response to the plant impulse . . s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σ dimensionless parameter, defined with,= ωrc

τ0 thermal time constant of the wall . . . . . . . . . . . . s
ω frequency (= 2π/time period) . . . . . . . . rad·s−1

Subscripts

A referring to the wallA
B referring to the wallB
ID referring to the wallID
ext exterior
int interior
I resistive layer
L capacitive layer
opt optimal value
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be obtained from symmetrical three-layered or five-laye
walls.

2. Problem statement

We can take into account a wall composed ofN homoge-
neous layers with a heat capacityCk and a thermal resistanc
Rk (k = 1, . . . ,N ) and two layers (k = 0 andk = N + 1),
purely resistive (C0 = CN+1 = 0), due to the wall inner an
outer surface thermal resistancesRint andRext (RN+1 =Rint
andR0 = Rext). This wall can be represented by the follo
ing scheme:

[interior]
(
RN+1
0

)(
RN

CN

)(
RN−1
CN−1

)
· · ·

×
(
R2
C2

)(
R1
C1

)(
R0
0

)
[exterior] (1)

In any case, total thermal resistancer and heat capacityc are
expressed by the following relations:

r =
N+1∑

Ri, c =
N∑

Ci
i=0 i=1
As is well known [3–5,18], in case of sinusoidal therm
fluctuation with angular frequencyω, the temperatureTi
and the heat fluxqi on the interior side of the wall an
the analogous quantities (Te, qe) concerning the outside ar
related as:(
Ti
qi

)
=

(
E F

G H

)(
Te
qe

)
=M

(
Te
qe

)
(2)

whereE, F , G, H are the elements of the wall transmissi
matrixM of the external wall:

M =M(N + 1) ·M(N) ·M(N − 1) · · ·M(2) ·M(1) ·M(0)

In this relationM(k) is the transmission matrix relating
the layerk (k = 0, . . . ,N + 1) and the factors are ordere
as in the scheme (1). Without air change, the oscilla
component of the heat fluxQ [W·m−2] the air-conditioning
plant has to provide to keep the indoor air tempera
constant, coincides withqi ; from Eq. (2), withTi = 0, we
have [5,9,13]:

Q= −Te

F
(3)

in which the wall transmission matrixM has been consid
ered to have unitary determinant:EH − FG = 1. In gen-
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eral, Te should be understood as sol–air temperature;
der the same thermal external excitation, the bigger is|F |,
the easier will be the air-conditioning plant working ste
Moreover, withTw wall inner surface temperature, we hav
Q= −Tw/Rint and it is possible to write|Tw/Te| =Rint/|F |
as the wall inner surface decrement factor [5,8].

The matrix elementF does not change under the effe
of a specular reflection of the whole wall, which is obtain
by inverting entirely the sequence of layers.

This property of the elementF has a remarkable cons
quence. If, as it seems reasonable, only one optimal wal
ists (with |F | maximum) as resistance-capacity distribut
varies, such a wall has, then, to be necessarily symmet
by reflection. In fact, if the optimal wall were not symme
rical, it would be possible to obtain, by specular reflecti
two walls with the same value ofF ; such walls would be
distinct and both optimal. The optimal wall, if exists and
unique, is, therefore, necessarily symmetrical by reflecti

As a direct consequence, the simplest non-symmet
walls such as, for example, the two-layered structures,
all the insulating material on the inner or outer surface of
wall, are to be excluded in the search for the optimal wa

In case of sinusoidal thermal fluctuation, with angu
frequencyω, the structures that maximize|F | are the idea
lumped-parameter ones, made of a sequence of purely r
tive and purely capacitive layers. Previous papers publis
by the same authors [5,9,13,14] show how the optimal
quence of resistive and capacitive layers turns out to be
termined by the value of the parameter:

σ = ωτ0

with τ0 = rc the wall thermal time constant. The results c
be resumed as follows.

By low values ofσ (σ < σ1 ∼= 18) it is convenient to
lump all capacity in only one layer with heat capacityc
to be disposed in the mid-plane of the wall, and to lu
resistances in two equal partsr/2 to be disposed in th
outer layers of the wall. The optimal structure is made
three layers with one capacitive, indicated by the follow
scheme:

[interior]
(
r

2

)
(c)

(
r

2

)
[exterior] (4)

For σ1 < σ < σ2 (σ2 ≈ 42) it is convenient to use
a symmetrical, five-layered structure, with two capacit
layers, such as:

[interior]
(
r − r1

2

)(
c

2

)
(r1)

(
c

2

)(
r − r1

2

)
[exterior] (5)

In the scheme (5)r1 is lower thanr/3 [13]; the structure ob
tained from such scheme, considering in first approxima
r1 ∼= r/3, will be, hereinafter, marked asH.

For higher values ofσ the optimal distribution turns
out to be still a symmetrical lumped-parameter one w
a number of layers increasing withσ ; by σ → ∞ the
optimal structure is the one of a homogeneous single-lay
l

-

wall with resistive and capacitive parameters uniform
distributed.

In Mediterranean area the building envelope walls g
erally show values ofσ < σ1; only in case of particularly
massive walls with remarkable thickness of insulating la
values ofσ > σ1 are also possible. Anyway, in these cas
in almost all situations of practical interest, it turns out
beσ < σ2. For example, in case of a 24 hour period of
thermal external fluctuation, for a homogeneous brick w
with a thickness of 25 cm and with densityρ = 600 kg·m−3

we haveσ ∼= 9; for a concrete wall of 20 cm and wit
ρ = 1600 kg·m−3 we haveσ ∼= 6. The presence of an in
sulating layer remarkably increases the value ofσ : adding
a polyurethane layer of 2 cm, the previous brick wall sho
σ ∼= 14, and adding the same insulating layer, the prev
concrete wall showsσ ∼= 17.

For a given wall thermal time constant, the value ofσ

is proportional to the frequency of the external therm
fluctuation and thus, for high frequencies, the correspon
value of σ might turn out to be high and will not b
taken into account in this study, since the high freque
thermal fluctuations are transmitted by the wall with stro
dampening and have a negligible influence on the ind
environment.

In case of impulsive external thermal excitation, t
Eq. (3) has been written as a relation between the Fou
components and cannot be directly applied to determine
response to an impulsive thermal excitation; this relation
be easily extended to any transient thermal behaviour
using Laplace transforms. In fact, by substituting inF the
complex variables = jω, the Eq. (3) can be understood a
relation between the Laplace transforms of the heat flux
the external air temperature; we, therefore, obtain:

£(Q) = −£(Te)/F (s) (6)

Into Eq. (6), the linear operator £, applied to a time funct
Y (t), yields the Laplace transform [16]:

£(Y ) =
∞∫

0

e−stY (t)dt (7)

wheres can assume any complex value.
In case of an impulsive excitation of the external temp

ature of any form, but of short time length compared to w
thermal time constantτ0, we can write [5,10–14]:

Te(t) = Ieδ(t) (8)

with δ(t) the Dirac delta function andIe the “intensity” of
the impulse [K·s].

From Eq. (8) we have £(Te) = Ie and, from Eq. (6), we
obtain [11]:

£(Q) = − Ie

F (s)
(9)

In this case we can investigate the following subject: wh
is the distribution of resistance and capacity in the outer w
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able to make easier the working step of the air-condition
plant for given r, c and Ie . The plant working step is
considered to be easier if heat flux is supplied uniform
distributed on a wide interval, as well as if its peak pow
value is small.

For this purpose, later on, two different criteria conce
ing the optimization of the resistance-capacity distribut
in the wall will be taken into account:

• criterion of the maximum time length;
• criterion of the minimum peak power value.

3. Response length of the air-conditioning plant

In this section we aim at determining the whole h
power exchanged by the air-conditioning plant working st
the time lag and the length of such working. For this purp
it is not necessary to know the inverse Laplace transform
£(Q); if we know the Laplace transform £(Y ) of the function
Y (t), it is possible to obtain directly the “moments” ofY (t),
that is to say the quantity:

mj =
∞∫

0

tj Y (t)dt with j = 0,1,2, . . .

From Eq. (7), differentiating with respect tos, we obtain:

m0 = £(Y )s=0 mj = (−1)j
(

dj£(Y )

dsj

)
s=0

for j > 0 (10)

If we identify the functionY (t) with the time respons
Q(t) of the air-conditioning plant, whose normalized tre
is reported in Fig. 1 (see Section 4) the zeroth-order (m0),
the first-order(m1) and the second-order(m2) moments are
particularly important. These moments show the phys
meaning as follows.

Fig. 1. Behaviour of the plant normalized responseφ(t) varying with time:
〈t〉 temporal barycentre;�t average time length;t0 instant to which the
functionφ(t) reaches its maximum value.
The zeroth-order moment represents the energy sup
by the air-conditioning plant in response to the exter
thermal excitation:

m0 =
∞∫

0

Q(t)dt

From the first-order moment we obtain the quantity〈t〉:

〈t〉 =
∫ ∞

0 tQ(t)dt∫ ∞
0 Q(t)dt

= m1

m0

which can be read as the time barycentre of the power
plied by the plant, or rather as the mean value oft obtained
by using as weighting function the quantityQ(t)/m0; 〈t〉
quantifies the “time lag” between the external thermal e
tation starting (at the instantt = 0) and the plant working
step (see Fig. 1).

In the same way, from the second-order moment
obtain the quantitym2/m0, which can be read as the me
value of the square of the plant response time. It follows
the average time length�t of the plant working step can b
expressed, as standard deviation obtained using as weig
functionQ(t)/m0, by the following relation (see Fig. 1):

�t2 =
∫ ∞

0 (t − 〈t〉)2Q(t)dt∫ ∞
0 Q(t)dt

= m0m2 −m2
1

m2
0

In order to calculate the moments physically relevant
Q(t), it is sufficient to know, from Eq. (10), a serie
expansion, truncated up to terms ins2, of the Laplace
transform (9); in other words the coefficientsf1 andf2 of
the expansion of the elementF of the transmission matri
have to be known:

F(s) = r + f1s + f2s
2 + O

(
s3) (11)

The lower-order moments of the heat power, from Eq. (1
result [5,11]:

m0 = −Ie/r, m1 = −f1Ie/r
2

m2 = −2Ie
(
f 2

1 /r − f2
)
/r2 (12)

In particular, from the first of these relations it follows th
the overall heat quantity, which must be supplied by the p
depends both on the intensity of the external tempera
impulse itself and on the thermal resistance of the wal
is not influenced by the wall heat capacity value and by
resistance-capacity distribution within the wall itself. On t
contrary, the time lag and the time length, can be calcul
as

〈t〉 =m1/m0 = f1/r, �t2 = f 2
1 /r

2 − 2f2/r (13)

Notice that the evaluation of〈t〉 and �t by Eq. (13) is
exact and does not depend on the fact that the expan
convergence (11) is more or less rapid. The calculatio
the coefficientsf1 andf2 is reported in Appendix A.

By using the expressions off1 andf2, see Eqs. (A.4)–
(A.5), and the second of the Eq. (13), after some calc
tions, we find the following relation:
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r2�t2 =
n∑

i=1

C2
i

[
ρ′2
i

(
r − ρ′

i

)2 − 1

3
Ri

(
r + Ri

2

)
ρ′
i

(
r − ρ′

i

)

+R2
i

(
R2
i

144
+ r2

12
− rRi

60

)]

+
n∑

i<k

CiCk

[
2ρ′2

i

(
r − ρ′

k

)2 + 1

6
R2
i

(
r − ρ′

k

)2

+ 1

6
R2
kρ

′2
i + 1

72
R2
i R

2
k

]
(14)

with ρ′
k thermal resistance preceding thekth layer mid-

section, see Eq. (A.6).
The Eq. (14) provides the plant’s response time len

under an impulsive external thermal excitation, in case
real multi-layered wall.

4. Temporal behaviour of the air-conditioning plant
response

In many cases it is important to determine the temp
behaviour of the heat fluxQ(t), which must be supplied
by the plant: in particular, it is necessary if the maxim
value of the heat power is to be calculated. In these ca
performing the inversion of the Laplace transform, fro
Eq. (9) it follows:

Q(t) = −Ie

r
· £−1

(
r

F

)
= −Ie

r
· φ(t) (15)

where, from Eq. (9), the functionφ(t) is given by:

φ(t) = £−1
[
r

F

]

The functionφ(t) is always positive; in Fig. 1 is shown th
behaviour ofφ as a function of the time.

For the first of the Eq. (12) it results:

∞∫
0

φ(t)dt = 1 (16)

while the quantity Max(φ/r) measures the peak value
Q(t) whenIe = 1 K·s. Owing to the proportionality betwee
Q andφ, pointed out by Eq. (15), the quantities〈t〉 and�t ,
defined in Section 3, can be obviously visualized in the gr
φ = φ(t), Fig. 1.

The functionr/F (s) shows a discrete infinity of simple
generally distinct, poles all situated on the negative se
axis ofs, solutions of the equationF(s) = 0; these solutions
all negative, are here indicated bybk and ordered in
decreasing order with the indexk (· · · < bk < · · · < b2 <

b1 < 0).
We, therefore, obtain the series [10,11]:

φ(t) =
∑

Bk · exp(bkt) (17)

k=1...∞
,

whose coefficientsBk , according to the method of residue
can be put in the following form:

Bk = r
/(

dF

ds

)
s=bk

(18)

The series (17) converges rapidly except for very little ti
intervals; it, therefore, provides, together with Eq. (1
a useful method for the calculation ofQ(t); in all the cases
examined in this paper it has been enough to take into
count no more than seven terms in the series expansion

Once the quantities (bk,Bk) are known, it is possible to
calculate the moments:

mj =
∞∫

0

tjQ(t)dt = −Ie

r

∞∫
0

tj φ(t)dt

= −(j)! · Ie
∑

k=1...∞

Bk

(−bk)j+1

5. Maximum time length criterion

In order to investigate the maximum length criterio
it is convenient to use a simple lumped-parameter mo
Other authors [19,20] describe the possibility to appr
imate the behaviour of building envelopes with lumpe
parameter models. A structure made of a sequence of p
resistive and purely capacitive layers can approximate
distributed-parameter wall, either homogeneous or m
layered. The use of an analysis based on a lumped-para
model does not affect the generality of the results of
study.

We can subdivide the wall into n purely capacitive laye
with heat capacitycs , and inton+ 1 purely resistive layers
with thermal resistancers ; the wall structure, resulting
with 2n + 1 layers, can be represented using the follow
scheme:

[interior](rn)(cn)(rn−1) · · · (r1)(c1)(r0)[exterior] (19)

where the resistancesr0 and rn are to be assumed a
comprehensive of the wall inner and outer surface ther
ones. Total thermal resistance and heat capacity:

r =
n∑

s=0

rs , c =
n∑

s=1

cs

are kept constant.
Analogous relations concerning a lumped-parameter

with the scheme (19) can be obtained, as a peculiar c
from the relations in Section 3. By using the expression
f1 andf2, see Eq. (A.8), the second of the Eqs. (13) yiel

r2�t2 =
n∑

i=1

[
ciρi(r − ρi)

]2 + 2
n∑

i<k

cickρ
2
i (r − ρk)

2 (20)

whereρk represents the thermal resistance preceding t
mal capacityck, see Eq. (A.7),(r −ρk) means the resistanc
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following capacityck and (ρi −ρk) means the resistance b
tween the two capacitiesci andck .

From Eq. (20)�τ assumes its maximum value if, at th
same time,f1 results to be maximal andf2 minimal. In order
to have a high value off1 (with the same values ofc andr),
all capacities are to be disposed near the mid-plane, s
to increase as much as possible their weightρi(r − ρi): this
is maximum forρi = r/2. For this reason, if all capacit
is lumped in only one layer,f1 appears to be the maximu
possible and resultsf1 = cr2/4; at the same time,f2 is equal
to zero and thus assumes the minimum possible valu
more formal terms, this condition can be realized by us
a symmetrical structure withn = 1 such as the scheme (4
putting, for instance:

r0 = r1 = r/2, c1 = c

rk = 0, ck = 0 (with k > 1)

The average time length of the plant working step in optim
conditions results:

�tmax= 1

4
τ0 (21)

In such conditions, also the time lag〈t〉 results to be
maximum and coincides just with the time length provid
by Eq. (21). We can conclude that, in order to maximize
average time length�τ of the heat power supplied by th
plant, it is convenient to realize a symmetrical three-laye
wall (n = 1), by disposing all heat capacity between t
equal resistive layers. Such a wall (see Section 2) resul
be optimal even in order to minimize the air-conditioni
plant working, by low values ofσ , in case of sinusoida
external temperature fluctuation.

6. Minimum peak power criterion

Also in this case it is convenient to use the lump
parameter scheme (19), examining separately the w
characterized by variousn. In this case every single laye
in the scheme (19) is characterized by the matrixes(

1 rs
0 1

) (
1 0
scs 1

)

according to whether it is a resistive or a capacitive one.
Obviously, the simplest interesting structure with t

scheme (19) is the one characterized byn = 1; in this case
the investigated wall results to be three-layered with
following scheme:

[interior](r1)(c1)(r0)[exterior]
The elementF1 of the wall transmission matrix withn = 1,
results to be:

F1 = r + r0(r − r0)cs = r(1+ a1s)

with a1 = r0
(r − r0)c (22)
r

s

and the decay constanta1 characterizing the plant respon
is obtained by solving the equationF1(s)= 0.

Performing the inversion of Laplace transform indica
in Eq. (15) we have [11]:

φ1(t)= 1

a1
exp

[
− t

a1

]
= r

r0(r − r0)c
exp

[
− rt

r0(r − r0)c

]

which describes an exponential decay and shows its hig
value Max(φ1) = φ1(0)= 1/a1 (for t = 0). Varyingr0 (0<
r0 < r), the decay constanta1 assumes its highest valuea1 =
τ0/4 whenr0 = r/2 (symmetrical wall); in these condition
the heat power required from the plant shows the minim
peak power value and we have:

min
(r0)

[
Max
(t)

(φ1)
]

= 4

τ0
(23)

Thus, when we restrict ton = 1, the minimum peak powe
criterion requires the choice of a symmetrical wall, made
capacitive layer disposed between two equal resistive lay
which coincides with the scheme (4).

In case of a generic n theFn is a n-degree polynomial
whose coefficients are positive and depend on the resist
and capacity elements of the scheme (19); if at least
of these elements is null, the polynomial assumes a de
smaller thann, showing that the investigated structure c
be reduced to a lower degree. In this polynomial the zer
degree coefficient equalsr; the highest-degree one is th
product of all 2n + 1 resistance and capacity eleme
composing the examined structure. AllFn(s) = 0 equation
roots result to be real and negative and the functionFn(s)

can be explicated in the following form:

Fn(s)= r(1+ a1s)(1+ a2s) · · · (1+ ans)

which generalizes the Eq. (22). The value of the de
constantsak can be obtained from the rootssk of the
F(s) = 0 equation:ak = −1/sk ; each of these time constan
is positive and smaller thanτ0. These values will be
assumed to be ordered in decreasing order:a1 � a2 �
a3 � · · ·. Supposingak as distinct values, the inverse Lapla
transformφn of Fn can be expressed in the following form

φn(t) =
∑

k=1...n

Aka
n−2
k exp

[
− t

ak

]
with

Ak =
[ ∏

i �=k
i=1...n

(ak − ai)

]−1

(24)

By n= 2 the scheme (19) describes a five-layered wa

[interior](r2)(c2)(r1)(c1)(r0)[exterior]
In this case the elementF2 of the transmission matrixM
with n= 2, turns out to be a second-degree polynomial:

F2 = r + [
c1r0(r1 + r2)+ c2(r0 + r1)r2

] · s
+ r0c1r1c2r2 · s2
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with: r0 + r1 + r2 = r andc1 + c2 = c. From Eq. (24), by
n= 2, we obtain:

φ2(t) = 1

a1 − a2

[
exp(−t/a1)− exp(−t/a2)

]
(25)

where the two decay constants are deduced from the
tions (s1, s2) of the second-degree equation:F2(s) = 0, such
as

a1 = −1/s1, a2 = −1/s2

The functionφ(t) reaches its maximum valueφ0
2:

φ0
2 = 1

a1 − a2

[(
a2

a1

)a1/(a1−a2)

−
(
a2

a1

)a2/(a1−a2)
]

(26)

at the instantt02 :

t02 = a1a2

a1 − a2
ln

(
a1

a2

)
(27)

If we aim at determining the structure withn = 2 which
minimizes φ0

2, it is enough to just consider symmetric
structures, according to what is suggested by the symm
property of the matrix elementF , pointed out in Section 2
Considering a symmetrical structure of the type (5), w
parameterr1 (0 < r1 < r), the following expressions ar
obtained for the decay constants.

a1 = 1

4
(r − r1)c, a2 = 1

4
(r − r1)r1

c

r
(28)

Substituting Eq. (28) into Eqs. (25), (26) and (27) we obta

φ2(t) = 4r

c(r − r1)2

[
exp

(
− 4t

c(r − r1)

)

− exp

(
− 4rt

cr1(r − r1)

)]

t02 = −cr1

4
ln

(
r1

r

)

φ0
2 = 4r

c(r − r1)2

[(
r1

r

)r1/(r−r1)

−
(
r1

r

)r/(r−r1)
]

As r1 varies,φ0
2 assumes its minimum value byr1 ∼=

0.2032r, where it resultsφ0
2

∼= 3.344/τ0. We can conclude
that, for the casen = 2, the minimum peak power criterio
involves that:

min
(r1)

[
Max
(t)

(φ2)
] ∼= 3.344/τ0 (29)

obtainable by a symmetrical five-layered wall with t
scheme (5) withr1 ∼= 0.2032r; this scheme turns out to b
obviously, favourable compared to that relating ton= 1 for
which the Eq. (23) is valid.

As r1 varies, such minimum appears to be not v
marked (“flat”); by r1 → r we haveφ0

2 → ∞, while by
r1 → 0 we haveφ0

2 = 4/τ0, according to Eq. (23). E.g., b
r1 = r/3 we haveφ0

2
∼= 3.464/τ0, while byr1 = r/2 we have

φ0
2 = 4/τ0. If we accept the criterion according to which

increase by 20% compared to the optimal value given
-

Fig. 2. The functionφ2 versust/τ0 in the symmetrical casen = 2 with
different r1/r values:r1/r = 0, r1/r = 0.2032, r1/r = 1/3, r1/r = 1/2
andr1/r = 0.7.

Eq. (29) can be admitted, the entire interval 0� r1 � r/2
turns out to be acceptable.

In order to illustrate this situation, in Fig. 2 is show
in the symmetrical case withn = 2, the behaviour of the
function φ2 versus t/τ0, for: r1/r = 0, r1/r = 0.2032,
r1/r = 1/3, r1/r = 1/2 andr1/r = 0.7.

By n= 3 the scheme (19) describes a seven-layered w

[interior](r3)(c3)(r2)(c2)(r1)(c1)(r0)[exterior]
In this case the formulae result to be more difficult, s
numerical approach is to be preferred. As well as for the c
n = 2, it is enough to restrict the analysis to symmetri
structures, with the resistancer1 (0< r1 < r/2) and the mid-
centre plane capacityc2 (0< c2 < c) assumed as paramete
So we have:

r0 = r3 =
(
r

2
− r1

)
, r2 = r1, c1 = c3 = c − c2

2

On the basis of the values of such parameters the t
time constants(a1, a2, a3) can be calculated by solving th
third-degree equationF3(s) = 0, and the temporal respon
φ3(t) can be determined by the Eq. (24). By solving
equation(dφ3/dt) = 0 the timet03 can be individuated, s
φ3(t) results to be maximum and the maximum valueφ0

3
is obtained as:φ0

3 = φ3(t
0
3). The numerical analysis show

that the minimum height peak conditions are achieved
a3 = 0 and, therefore, coincide with those studied in the c
of n= 2; so we have:

min
(r1,c2)

[
Max
(t)

(φ3)
] ∼= 3.344/τ0

These considerations can be generalized byn > 3 and lead
to the conclusion that the plant peak power reaches its lo
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value for a structure withn= 2 such as the previous one, a
we have:

min
(n)

[
Max
(t)

(φn)
] ∼= 3.344/τ0

We can, therefore, state that, in order to minimize the p
power required from the plant in its working step, t
best possible wall with the scheme (19) results to be
symmetrical, five-layered one (n = 2) with r1/r = 0.2032,
obtained by disposing in the mid-plane resistive layer ab
20% of the total thermal resistancer. This wall will be,
hereinafter, marked asK.

7. The coefficient of performance

In the previous sections two different criteria, able
make easier the air-conditioning plant working, have b
taken into account: to maximize the plant working s
time length�t , or to minimize the peak power of th
working step. The optimal wall, determined with the fi
of these criteria, coincides with the optimal one obtain
for low values ofσ in case of sinusoidal external therm
fluctuations. This involves that the maximum time leng
criterion is to be preferred; on the other hand, if
compare different structures of real walls (with distribu
parameters), the two criteria provide similar results.

For this reason we introduce a parameter defined as:

ε = 4
�t

τ0
= 4

rτ0

√
f 2

1 − 2rf2 (30)

It is a coefficient of performancefor the distribution of
resistance and capacity within a wall and it can quan
the deviation of a real distributed-parameter wall from
behaviour of the lumped-parameter model.

For a multi-layered wall, the parameterε can be calcu-
lated by Eq. (14) or, if the wall can be approximated
a lumped-parameter model, by Eq. (20). This paramete
a dimensionless quantity, able to assume numerical va
from 0 to 1; in particular, it assumes its maximum va
ε = 1 in the optimal case of a symmetrical three-laye
wall with the scheme (4), as it clearly appears from Eqs. (
and (30).

Neglecting the inner and outer surface thermal resista
we have:ε = 0 for a two-layered wall, with one laye
purely resistive and the other purely capacitive, both in c
of resistive layer on the inner face and on the outer fa
ε = (2/15)

√
(10) ∼= 0.422 for a homogeneous wall wit

continuous distribution of resistance and capacity.
The coefficient of performance is also related to the p

response under sinusoidal external thermal fluctuations
a low value of σ . This response, according to Eq. (3
is determined by the matrix elementF . Under such a
sinusoidal fluctuation, we have to puts = jω = jσ/τ0,
so that the Eq. (11) provides for the|F | the following
expansion:
|F |2 = r2 + (
f 2

1 − 2rf2
) σ
τ2

0

2 + O
(
σ 4)

= r2
[
1+

(
εσ

4

)2]
+ O

(
σ 4)

in which Eq. (30) has been used. This shows thatε can also
be defined by the relation:

ε = lim
σ→0

(4/σ) ·
√

|F/r|2 − 1

For this reason, in case of sinusoidal external thermal fl
tuations and by low values ofσ the search for the maximum
value of the coefficient of performanceε allows to individu-
ate the wall configuration which maximizes|F | by reducing
to the minimum the plant intervention (see Section 2). T
coefficient of performance fully characterizes the behav
of a wall, even in case of sinusoidal thermal fluctuations
low values ofσ . In fact, in most cases of practical intere
the values ofσ are low and just in case of massive and v
well-insulated walls these values can result to be higher
σ1 (see Section 2). The coefficient of performance turns
to be useful also in case of thermal excitations with comp
spectrum, provided that there are not high frequency c
ponents with particularly remarkable intensity; in all the
cases the maximization ofε represents very well the wa
optimization [15–17].

8. Examples of walls commonly used in building

Multi-layered walls are generally used in the buildi
envelope. Materials used in the realization of such walls
referable to two categories: the first type with essenti
resistive thermal properties (I) and the other with essential
capacitive thermal properties (L).

Due to the practical importance of three-layered str
tures, it seems interesting to examine all possible th
layered two-component walls realized with given quanti
of materialsI andL. We can suppose of shifting a slice
materialI inside a slab of materialL, by introducing the di-
mensionless parameterx (0� x � 1) as the portion of mate
rial L on the wall inner face. We have the following schem

[interior](Rint)[xL][I][(1− x)L
]
(Rext)[exterior] (31)

where the slice of materialI shifts from the inside toward
the outside by increasing values of the parameterx. By x = 0
the insulating material is disposed on the wall inner faceI–L
walls), byx = 0.5 it is disposed in the mid-plane of the wa
between two equal layers of materialL (L–I–L walls) and by
x = 1 it is disposed on the wall outer face (L–I walls).

In the same way, we can suppose of making materiL
float into materialI, but it is better to make it move in th
opposite direction, that is to say from the exterior inwar
In this case we can consider the following scheme:

[interior](Rint)
[
(1− x)I

][L][xI](Rext)[exterior] (32)
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Table 1
Description of the walls thermal properties used in the calculations

Wall Layers d ρ cp λ c τ0 = rc σ = ωτ0
[cm] [kg·m−3] [kJ·kg−1·K−1] [W ·m−1·K−1] [J·m−2·K−1] [h] (24 h period)

A Polyurethane (I) 2.9 35 1.60 0.035 65000 28.9 7.56
Cellular concrete (L) 12 600 0.88 0.20

B Polyurethane (I) 4.5 35 1.60 0.035 143000 63.6 16.7
Concrete (L) 10 1600 0.88 0.70
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where the parameterx is the fraction of materialI on the wall
outer face.

By x = 0 andx = 1 the insulating material is dispose
as in the previous cases (I–L andL–I), by x = 0.5 material
L is disposed in the mid-plane of the wall between t
equal layers of materialI (I–L–I). The schemes (31) and (3
exhaust all possible cases of three-layered wall.

We have considered, as an example, the wallsA and B
described in Table 1 and characterized by the same val
total thermal resistance (r = 1.60 m2·K·W−1), by assuming
for the wall inner and outer surface thermal resistances
reference valuesRint = 0.13 andRext = 0.04 m2·K·W−1

[EN ISO 6946/1996]. In Table 1 some important therm
parameters for both wallsA andB are also shown.

It could be interesting to compare the behaviour o
wall with the schemes (31) and (32) to the behaviour
an ideal three-layered lumped-parameter wall with surf
thermal resistancesRint andRext. In the same way, it could
be interesting to compare the behaviour of a wall with
schemes (32) and (31) to the behaviour of three or
layered lumped-parameter walls.

A wall with the schene (32) in which materialI is purely
resistive and materialL purely capacitive is defined asID1;
the wall turns out to be, therefore, a lumped-parame
three-layer one, and can be represented by the sch
(19) with n = 1, where resistances have to be mean
comprehensive of that due to the surface thermal resista
From Eq. (20) withn= 1 and from Eq. (30) we obtain:

ε = 4

r2

[
Rint + (1− x)(r −Rint −Rext)

]
× [

Rext + x(r −Rint −Rext)
]

(33)

From Eq. (33) it follows that the maximum value ofε
(ε = 1) is obtained whenx = 0.554.

Analogously, a wall with the scheme (31) in whic
materialI is purely resistive and materialL purely capacitive
is defined asID2; the wall turns out to be, therefore,
lumped-parameter, five-layer one, and can be represent
the scheme (19) withn = 2, where the extreme resistanc
coincide with the surface thermal resistances. From Eq.
with n= 2 and from Eq. (30) we obtain:

ε = 4RintRext

r2

[
x2

(
r −Rint

Rext

)2

+ (1− x)2
(
r −Rext

)2

+ 2x(1− x)

]1/2

(34)

Rint
f

e

.

y

Fig. 3. Variation of the coefficient of performance as a function ofx for
the three-layered wallsA and B with a scheme (31), dashed curves, a
a scheme (32), continuous curves. The figure also shows the three-la
lumped-parameter wall,ID1 andID2.

By Eq. (34) the maximum value ofε (ε = 0.299) is obtained
whenx = 1.

It should be noted that for the wallsID1 and ID2 the
coefficient of performance does not depend on the wall
capacity, but just on the total thermal resistance (r) and on
the inner and outer surface thermal ones (Rint andRext).

In Fig. 3 the coefficient of performance is shown a
function of x for the structures with the schemes (31) a
(32). As clearly shown in Fig. 3 all the wallsA andB with
a scheme (32) turn out to be better than the ones wi
scheme (31). The wallID1 represented by pointOID1 (with
x = 0.554 andε = 1) is the best one, while the wallID2
represented by pointPID2 (with x = 0.0958 andε = 0.0927)
is the worst one.

The best real wall is theB-type one with a structur
corresponding to the scheme (32) withx ≈ 0.55 andε =
εopt = 0.93 (OB), while for the wall A the best structure
in the scheme (32) is the one withx = 0.60 to which
correspondsε = εopt = 0.75 (OA).

The worst real wall is theB-type one with a structur
corresponding to the scheme (32) withx ≈ 0.28 andε =
0.16 (PB), while for the wallA the worst structure in th
scheme (32) is the one withx = 0.42 to which correspond
ε = 0.29 (PA).
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It should be noted that for the wallA the coefficient of
performance(ε)A varies from 0.75 (OA) to 0.29 (PA) and for
the wall B the coefficient of performance(ε)B varies from
0.94 (OB) to 0.16 (PB ), see Fig. 3. In other words, the wa
having a high value ofεopt show higher excursions in value
of ε; such walls are better only if well designed.

The curves relating to the schemes (31) and (32) m
each other both whenx = 0 andx = 1. Whenx = 0 the
points IA (ε = 0.47), IB (ε = 0.21) andIID (ε = 0.0975),
corresponding toI–L walls, are obtained. On the contra
whenx = 1 the pointsEA (ε = 0.56),EB (ε = 0.38) andEID
(ε = 0.2986), corresponding toL–I walls are obtained.

Very important are the walls designed in a symmetr
way (x = 0.5) but with an asymmetry, from a therm
point of view, due to the inner and outer surface ther
resistances (Rint �= Rext). By x = 0.5 we have symmetrica
three-layered walls corresponding, in the case of the sch
(32), to the pointsSID1 (ε = 0.997), SB (ε = 0.92) and
SA (ε = 0.74), I–L–I walls and, in the case of the schem
(31), to the pointsS′

ID2 (ε = 0.157),S′
B (ε = 0.19) andS′

A

(ε = 0.30) (L–I–L walls).
The structuresOID1 (x ≈ 0.55, ε = 1), OB (x ≈ 0.55,

ε = 0.93) andOA (x = 0.60, ε = 0.75) represent the be
realizations of the lumped-parameter model, see the sch
(4); such structures, as it results to be evident from
graph, are, for practical purposes, well approximated by
symmetrical ones represented by the pointsSID2, SB , SA.

A remarkably important case is represented by the ho
geneous walls. Notice, on this subject, that materials w
outstanding mechanical resistance and with low value
thermal conductivity have been recently introduced into
building practice. These materials (concrete made of
panded clay, pearlite and vermiculite, autoclaved and so
produced in blocks or panels, make possible the realiza
of homogeneous walls with good mechanical and ther
properties. In case of a homogeneous wall with the re
ence values for the inner and outer surface thermal resist
and with the same total thermal resistancer as the wallsA
andB, we find thatε = 0.47, regardless of the value of th
heat capacity (see Section 7). Homogeneous walls are
characterized by values of the coefficient of performa
much lower than those, which can be obtained by using w
designed multi-layered walls, with the samer.

Some five-layered walls, obtainable by given thickn
of the two materialsI and L have been examined to
Among them a certain interest is presented by those, w
approximate the following symmetrical lumped-parame
walls:

• H (see Section 2), represented by the scheme (5)
r1 ≈ r/3,

• K (see Section 6) represented by the scheme (5)
r1 = 0.2032r ≈ r/5.

The simplest realization is represented respectively by
following schemes:
e

e

(a)

(b)

Fig. 4. (a) WallA: variation of |Q/Ie | [W·m−2·K−1·s−1] as a function
of time [s] for the walls corresponding to the pointsIA, PA, S′

A, EA,
SA and OA shown in Fig. 3; to have a comparison, the behaviour o
homogeneous wall,MA, is also plotted. (b) WallB: variation of |Q/Ie|
[W·m−2·K−1·s−1] as a function of time [s] for the walls correspondin
to the pointsIB , PB , S′

B
, EB , SB and OB shown in Fig. 3; to have a

comparison, the behaviour of a homogeneous wall,MB , is also plotted.

[interior](Rint)[I/3]
× [L/2][I/3][L/2][I/3](Rext)[exterior] (H1)

[interior](Rint)[2I/5]
× [L/2][I/5][L/2][2I/5](Rext)[exterior] (K1)

For H1 we find out:ε = 0.60 (A walls) andε = 0.68 (B
walls); for K1: ε = 0.66 (A walls) andε = 0.78 (B walls).

For all the structures being investigated the temp
trends of the plant response have been determined car
out the calculations using the software MAPLE accord
to the method indicated in Section 4, i.e., solving
equationF(s) = 0 and using Eqs. (17), (18). In Fig. 4(
relating to wallA, the variation of|Q/Ie| [W·m−2·K−1·s−1]
as a function of the time [s] is shown for the structu
corresponding to the pointsIA, PA, S′

A, EA, SA and OA

of Fig. 3. In the same figure the variation of|Q/Ie| for a
homogeneous wall,MA, with the reference values for inne
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and outer surface thermal resistances and with the s
thermal resistance and capacity as wallA, is also shown
In Fig. 4(b), relating to wallB, the same quantity is show
for the structures corresponding to the pointsIB , PB , S′

B ,
EB , SB and OB of Fig. 3 and for the homogeneous wa
MB , with the reference values for inner and outer surf
thermal resistances and with the same thermal resistanc
capacity as wallB.

Since all the considered walls are characterized by
same thermal resistance value, in any case the same e
is required from the plant and therefore the area subten
by the curves results to be identical and, for the Eqs. (
(16), equal to 1/r = 0.625 [W·m−2·K−1].

In Fig. 4(a) and (b), the curvesSA andSB result to be
very close to the curvesOA andOB ; S′

A also is very near to
the PA, while you can notice a difference betweenS′

B and
PB , according to the above-remarked fact that the highe
the value ofεopt, the more evident result to be the differenc
among the various walls. We can notice that the curves,
the exception of that relating to the wallIB , are ordered in
the direction of the decreasing coefficient of performan
as the coefficient of performance decreases, the peak p
required from the plant during its intervention increases.
differences between the results of the two distinct crite
based on the impulse length and on its peak value ten
converge, and the lower is the value ofεopt, the more narrow
such convergence becomes.

In any case, the usual walls, in particular the homo
neous ones (MA, MB ), the two-layered ones with the ins
lating material disposed on the outside (EA, EB ) or with the
insulating material disposed on the wall inner face (IA, IB ),
and the three-layered ones with the insulating material
posed in the mid-plane of the wall (S′

A, S′
B ), result to be

worse than the optimal ones (OA, OB ).
In Fig. 5(a) and (b) the variation of|Q/Ie| is plotted

versus the time (s) for the five-layered structures (H1, K1);
the behaviour of the homogeneous wall (M) and of the
optimal three-layered one (O) is also shown. The Fig. 5(a
concerns the wallA and the Fig. 5(b) the wallB.

It is interesting to notice that, in the case of the wallB, the
peak value ofK1 is a little lower than the one ofO, according
to the minimum peak criterion; on the contrary, for t
wall A, provided with a lowerεopt, the peak value ofK1 is
slightly higher than that ofO. In all the other cases plotte
the structures with higherε show lower peaks. Therefor
also the investigation of the temporal trends of five-laye
structures shows how the two criteria, based on the le
and the peak value, give almost coincident directions for
wall A, and quite similar ones for the wallB; this confirms
that the lower isεopt, the less the two criteria differ.

9. Conclusions

The problem concerning the determination of the bu
ing envelope structure able to facilitate the air-condition
d

y

r

(a)

(b)

Fig. 5. (a) WallA: variation of|Q/Ie| [W·m−2·K−1] as a function of time
[s] for the five-layered wallsH1, K1; to have a comparison, the behaviour
the homogeneous wall,M, and of the optimal three-layered wall,O, is also
plotted. (b) WallB: variation of|Q/Ie| [W·m−2·K−1] as a function of time
[s] for the five-layered wallsH1, K1; to have a comparison, the behaviour
the homogeneous wall,M, and of the optimal three-layered wall,O, is also
plotted.

plant working step, in order to keep the indoor air tempe
ture constant against impulsive external temperature ex
tions, can be investigated following two different optimiz
tion criteria: maximize the average time length or rather m
imize the plant peak power.

On the basis of the first criterion, the optimal w
coincides with the symmetrical three-layered one, able
minimize the air-conditioning plant working step in case
sinusoidal external thermal fluctuations of low frequen
For such a wall, realized disposing all available heat capa
between two equal resistive layers, the average time le
of the plant working step results to be equal to a quarte
the wall time constant.

On the basis of the second criterion, the optimal wall
turned out to be the symmetrical five-layered one with t
capacitive layers and three resistive, realized by dispo
in the mid-plane resistive layer the 20.32% of the w
total thermal resistance; in this case the peak power o
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plant working step is inversely proportional to the wall h
capacity. For such a wall, if its mid-plane layer resistanc
reduced, the peak power increases a little; so that the op
wall, determined on the basis of the first criterion, sho
a good performance on the basis of the second criterio
well.

Under the considered conditions, the optimal structure
an external wall can be stated to be the symmetrical th
layered one, obtained disposing all available heat capa
between two equal resistive layers. Notice that such a wa
very different from those of common use in building. All th
usual walls, in particular the single-layered homogene
ones, the two-layered ones with the insulating mate
disposed on the wall outer or inner face, as well as the th
layered ones with the insulating material disposed in
mid-plane of the wall, have resulted to be sensibly worse

The previous analysis allows the introduction of a n
parameterε (0 � ε � 1), calledcoefficient of performance,
whose value quantifies the suitability of the distribution
resistive and capacitive layers in a multi-layer wall, with
problems concerning thermal building-plant interaction.
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Appendix A

In a way similar to that used in Eq. (11), it is possible
expand, up to second-degree terms, the elementsE, G and
H of the transmission matrix:(
E F

G H

)
We obtain:

E = 1+ e1s + e2s
2 + O

(
s3) (A.1)

G= cs + g2s
2 + O

(
s3) (A.2)

H = 1+ h1s + h2s
2 + O

(
s3) (A.3)

The elements of the transmission matrix for a generic la
k, with thermal resistanceRk and heat capacityCk , can be
given in hyperbolic functions form:

Ek =Hk = cosh
(√

RkCks
)

= 1+ 1

2
RkCks + 1

24
(RkCks)

2 + O
(
s3)

Fk =
√

Rk

Cks
sinh

(√
RkCks

)

l

=Rk

[
1+ 1

6
RkCks + 1

120
(RkCks)

2
]

+ O
(
s3)

Gk =
√
Cks

Rk

sinh
(√

RkCks
) = Cks

[
1+ 1

6
RkCks

]
+ O

(
s3)

where series expansions truncated up to the second d
terms in s are also reported.

For the scheme (1) the layers withk = 0 and withk =
N + 1 (wall inner and outer surface thermal resistanc
are characterized byE = H = 1, G = 0 and F equal,
respectively, toRext and toRint. More generally, once th
expansion of a matrix relating to a generic sequence oN

homogeneous layers has been given, it is easy to find
expansion of the matrix (whose elements are marked wit
overbar) for a sequence ofN+1 layers. This can be obtaine
writing:( �E �F

�G �H
)

=
(
EN+1 FN+1
GN+1 HN+1

)(
E F

G H

)
and neglecting terms whose degree is higher than
second. With some calculations we obtain the follow
expressions [5,11]:

ē1 = e1 +RN+1

(
c + 1

2
CN+1

)

ē2 = e2 + 1

2
RN+1CN+1e1 +RN+1g2

+ 1

6
R2
N+1CN+1

(
c + 1

4
CN+1

)
r̄ = r +RN+1

f̄1 = f1 +RN+1h1 + 1

2
RN+1CN+1

(
r + 1

3
RN+1

)

f̄2 = f2 + 1

2
RN+1CN+1f1 +RN+1h2 + 1

6
R2
N+1CN+1h1

+ 1

24
R2
N+1C

2
N+1

(
r + 1

5
RN+1

)
c̄ = c+CN+1

ḡ2 = g2 +CN+1e1 + 1

2
RN+1CN+1

(
c+ 1

3
CN+1

)

h̄1 = h1 +CN+1

(
r + 1

2
RN+1

)

h̄2 = h2 + 1

2
RN+1CN+1h1 +CN+1f1

+ 1

6
RN+1C

2
N+1

(
r + 1

4
RN+1

)
which can be used as recursive relations for the calcula
of all coefficients in Eqs. (11), (A.1)–(A.3). In particular, f
the coefficientsf1 andf2 of the expansion (11) for a wa
with the scheme (1), we obtain:

f1 =
N∑

Ck

[
ρ′
k

(
r − ρ′

k

) − 1

12
R2
k

]
(A.4)
k=1
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and

f2 =
N∑
i<k

CiCk

[
ρ′
i

(
ρ′
k − ρ′

i

)(
r − ρ′

k

)

− 1

12
R2
kρ

′
i − 1

12
R2
i

(
r − ρ′

k

)]

+
N∑
i=1

C2
i

[
1

6
ρ′
iRi

(
r − ρ′

i

) − 1

24
rR2

i + 1

120
R3
i

]
(A.5)

with:

ρ′
k =R1 + · · · +Rk−1 + 1

2
Rk =

k−1∑
j=1

Rj + 1

2
Rk (A.6)

In the particular case of lumped-parameter model,
scheme (19), we should note that the capacitive layers
contribute to the terms of the sums in Eqs. (A.4), (A.
moreover, of course, the terms containingCiRi vanish.
Furthermore, once a pure capacityck has been fixed, th
quantityρ′

k comes to the sum of resistances “preceding”
capacity in the scheme (19), and, therefore, identifies it
with the resistanceρk defined by:

ρk =
k−1∑
j=1

rj (A.7)

By using this approach we can deduce, from the relation
Section 3, the analogous ones valid for a lumped-param
wall; in particular, from Eqs. (A.4), (A.5) we obtain:

f1 =
n∑

i=1

ciρi(r − ρi)

f2 =
n∑

i<k

cickρi(ρk − ρi)(r − ρk)

(A.8)
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