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Abstract

In this paper the building envelope suitable for making easier the purpose of the air-conditioning plant to keep the indoor air temperature
constant against impulsive external temperature excitation is investigated. For this aim two different criteria can be assumed: the peak powel
minimization or the average time length maximization of the air-conditioning plant working step. Among all possible multi-layered walls,
the symmetrical three-layered one, with the high heat capacity layer between two equal layers made of insulating material, turns out to be an
excellent compromise fully satisfying the first criterion and, with good approximation, the second too. All the other usual walls, in particular
the homogeneous single-layered ones, as well as the two-layered ones with the insulating layer disposed on the wall outer or inner face, an
the three-layered ones with the insulating layer disposed in the mid-plane of the wall, have turned out to be distinctly worse.

0 2003 Elsevier SAS. All rights reserved.
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1. Introduction in [9] and a fully developed analysis in [13], which we refer
to for wide references.

The determination of the most convenient sequence of In the case of impulsive external thermal excitation, two
resistive and capacitive layers in the building envelopes different criteria can essentially be followed to make easier
requires a careful specification of the parameters to bethe air-conditioning plant working: to minimize the peak
optimized. If such parameters vary, the optimal structure power [10] or to maximize the average time length [13]
of the wall may remarkably vary too. In particular, in [1,2] of the plant working step. This subject is investigated in
the building envelope which, in case of intermittent heating, this paper, where multi-layered distributed-parameter walls
minimizes temperature fluctuations and the energy requiredare schematized as a sequence of essentially resistive layers
by the plant are defined; in [3-8] walls are investigated in alternating with essentially capacitive ones. First of all, the
order to optimize the decrement factor and time lag under time response of the air-conditioning plant working step,
sinusoidal external thermal fluctuations. with particular reference to its peak power and average time

A very interesting problem, relating to the building- length, has been determined. Later, the results are applied
plant interaction, is to determine the building envelope to the simplest case of a lumped-parameter wall with purely
walls, which minimize the air-conditioning plant working resistive layers alternating with purely capacitive ones. The
in order to keep the indoor air temperature constant againstlumped-parameter model results to be so relevant as it
outdoor air temperature variations with given temporal represents the best limit solution.
behaviour [9-15]. The solution, obviously, does not depend  In this paper a dimensionless parameter, cattsefficient
on the geometrical and thermal properties of the building of performanceis introduced, which is able to quantify the
interiors (e.g., floors and partitions), but only on the building deviation of a real multi-layered distributed-parameter wall
envelope walls. from the limit behaviour of the optimal lumped-parameter

In the case of sinusoidal external temperature fluctuation, model and, thus, to characterize the wall in its interaction
an approximate solution, in absence of air changes, is givenwith the plant [14-17].

The performance of different walls, made of materials
msponding author. commonly used in building, has been evaluated. In any case,
E-mail addressesan.ciampi@ing.unipi.it (M. Ciampi), the worst walls have turned out to be the homogeneous
f.leccese@ing.unipi.it (F. Leccese), g.tuoni@ing.unipi.it (G. Tuoni). and the simple two-layered ones; optimal performance can
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Nomenclature
A B walls used in the calculations (see Tables 1, 2)
c wall heat capacity ................ 2Kt
cp specific heat at constant pressure :kgd1-K—1
E, F,G, H elements of the wall transmission matrix
H five-layered lumped-parameter model
(see Section 2)
I material with essentially resistive thermal
properties
ID ideal three-layered lumped-parameter wall
(see Section 8)
I, intensity of theimpulse.................. K
K five-layered lumped-parameter model
(see Section 6)
L material with essentially capacitive thermal
properties
£ Laplace transform linear operator
m; moment ofj-order (see Section 3)
M transmission matrix of the wall
p1, p2, p3, pa dimensionless parameters, defined
in Eq. (31)
[0) heat flux due to the air-conditioning
plant. ......c..oiii Wi—2
r wall thermal resistance ........... 2wt
Rint inner surface thermal resistance . ..2. koW1
Rext  outer surface thermal resistance .. .2 kaw—1
s = jow complex variable [ = /—1)
t Me . S
T; indoor air temperature .................... K

T, outdoor air temperature ............ ... I

Ty wall inner surface temperature ............. K

X L material dimensionless fraction on the wall
inner face

Z I material dimensionless fraction on the wall
outer face

Greek symbols

8(t) Dirac delta function

AT average time length of the air-conditioning plant
working step

e coefficient of performance, defined in Eq. (30)

A thermal conductivity ............ wh—1t.K-1

o) normalized response to the plant impulse =1 s

0 density. ..o kg3

o dimensionless parameter, defined withprc

70 thermal time constantofthewall............ 5

a) frequency & 2z /time period) ........ rag!

Subscripts

A referring to the wallA

B referring to the walB

ID referring to the wallD

ext exterior

int interior

I resistive layer

L capacitive layer

opt optimal value

be obtained from symmetrical three-layered or five-layered As is well known [3-5,18], in case of sinusoidal thermal

walls.

2. Problem statement

We can take into account a wall composedvofomoge-
neous layers with a heat capadity and a thermal resistance
Ry (k=1,...,N) and two layers =0 andk = N + 1),
purely resistive Co = Cy+1 = 0), due to the wall inner and
outer surface thermal resistand®g: andRext (Ry+1 = Rint
and Rg = Rexi). This wall can be represented by the follow-
ing scheme:

. . RN+1 RN RN—l
[interior] <0 > < cr ) (CN—l) .
x ( g; > ( gi > < go ) [exteriol

In any case, total thermal resistancand heat capacityare
expressed by the following relations:

N
Cc= ZC,’
i=1

1)

N+1

r= Z Ri,
i=0

fluctuation with angular frequency, the temperaturd;
and the heat flux; on the interior side of the wall and
the analogous quantitiey, ¢.) concerning the outside are
related as:

(a)=(6 #)(5)=» ()

whereE, F, G, H are the elements of the wall transmission
matrix M of the external wall:

(2)

M=M(N+1)-MN)-M(N—1)---M(2)-M(1) - M(0)

In this relationM (k) is the transmission matrix relating to
the layerk (k=0,..., N + 1) and the factors are ordered
as in the scheme (1). Without air change, the oscillating
component of the heat flu@ [W-m~?] the air-conditioning
plant has to provide to keep the indoor air temperature
constant, coincides with;; from Eq. (2), with7; = 0, we
have [5,9,13]:

T,

0=-—= (3)

in which the wall transmission matri¥ has been consid-
ered to have unitary determinaii:H — FG = 1. In gen-
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eral, T, should be understood as sol-air temperature; un- wall with resistive and capacitive parameters uniformly
der the same thermal external excitation, the biggeFis distributed.
the easier will be the air-conditioning plant working step. In Mediterranean area the building envelope walls gen-
Moreover, withT,, wall inner surface temperature, we have: erally show values o0& < o1; only in case of particularly
0 = —Ty/Rintanditis possible to writely, / T.| = Rint/| F| massive walls with remarkable thickness of insulating layer,
as the wall inner surface decrement factor [5,8]. values ofo > o1 are also possible. Anyway, in these cases,
The matrix elemenf# does not change under the effect in almost all situations of practical interest, it turns out to
of a specular reflection of the whole wall, which is obtained beo < o2. For example, in case of a 24 hour period of the
by inverting entirely the sequence of layers. thermal external fluctuation, for a homogeneous brick wall
This property of the elemerft has a remarkable conse- with a thickness of 25 cm and with densjty= 600 kgm—3
guence. If, as it seems reasonable, only one optimal wall ex-we haves = 9; for a concrete wall of 20 cm and with
ists (with | F| maximum) as resistance-capacity distribution p = 1600 kgm~2 we haves = 6. The presence of an in-
varies, such a wall has, then, to be necessarily symmetricalsulating layer remarkably increases the valuerofidding
by reflection. In fact, if the optimal wall were not symmet- a polyurethane layer of 2 cm, the previous brick wall shows
rical, it would be possible to obtain, by specular reflection, ¢ = 14, and adding the same insulating layer, the previous
two walls with the same value af; such walls would be  concrete wall shows = 17.
distinct and both optimal. The optimal wall, if exists and is For a given wall thermal time constant, the valuecof
unique, is, therefore, necessarily symmetrical by reflection. is proportional to the frequency of the external thermal
As a direct consequence, the simplest non-symmetricalfluctuation and thus, for high frequencies, the corresponding
walls such as, for example, the two-layered structures, with value of ¢ might turn out to be high and will not be
all the insulating material on the inner or outer surface of the taken into account in this study, since the high frequency
wall, are to be excluded in the search for the optimal walls. thermal fluctuations are transmitted by the wall with strong
In case of sinusoidal thermal fluctuation, with angular dampening and have a negligible influence on the indoor
frequencyw, the structures that maximizé&’| are the ideal environment.
lumped-parameter ones, made of a sequence of purely resis- In case of impulsive external thermal excitation, the
tive and purely capacitive layers. Previous papers publishedEg. (3) has been written as a relation between the Fourier
by the same authors [5,9,13,14] show how the optimal se- components and cannot be directly applied to determine the
guence of resistive and capacitive layers turns out to be de-response to an impulsive thermal excitation; this relation can

termined by the value of the parameter:
o = w1

with g = rc the wall thermal time constant. The results can
be resumed as follows.

By low values ofo (0 < o1 = 18) it is convenient to
lump all capacity in only one layer with heat capacity
to be disposed in the mid-plane of the wall, and to lump
resistances in two equal partg2 to be disposed in the
outer layers of the wall. The optimal structure is made of
three layers with one capacitive, indicated by the following
scheme:

. . r r .
[interior] (5> (c) (5> [exteriof

For o1 < 0 < 02 (02 =~ 42) it is convenient to use
a symmetrical, five-layered structure, with two capacitive
-n

layers, such as:
C C
)(2)()(

In the scheme (5); is lower than/3 [13]; the structure ob-
tained from such scheme, considering in first approximation
r1 = r/3, will be, hereinafter, marked &t

For higher values otr the optimal distribution turns
out to be still a symmetrical lumped-parameter one with
a number of layers increasing with; by ¢ — oo the

(4)

r—ry r

[interior]( )[exterior] (5)

be easily extended to any transient thermal behaviour, by
using Laplace transforms. In fact, by substitutinghnthe
complex variable = jw, the Eq. (3) can be understood as a
relation between the Laplace transforms of the heat flux and
the external air temperature; we, therefore, obtain:

£(Q) = —£(T,)/F(s) (6)
Into Eg. (6), the linear operator £, applied to a time function
Y (1), yields the Laplace transform [16]:
o
£Y) = / e Y (r)dt
0

(7)

wheres can assume any complex value.

In case of an impulsive excitation of the external temper-
ature of any form, but of short time length compared to wall
thermal time constanp, we can write [5,10-14]:

T,(t) = 1,5(1) (8)

with &(¢) the Dirac delta function and, the “intensity” of
the impulse [Ks].
From Eq. (8) we have@},) = I, and, from Eq. (6), we
obtain [11]:
I,
F(s)
In this case we can investigate the following subject: which

£(Q) = 9)

optimal structure is the one of a homogeneous single-layeredis the distribution of resistance and capacity in the outer wall



420

able to make easier the working step of the air-conditioning

plant for givenr, ¢ and I,. The plant working step is
considered to be easier if heat flux is supplied uniformly
distributed on a wide interval, as well as if its peak power
value is small.

For this purpose, later on, two different criteria concern-
ing the optimization of the resistance-capacity distribution
in the wall will be taken into account:

e criterion of the maximum time length;
e criterion of the minimum peak power value.

3. Response length of the air-conditioning plant

In this section we aim at determining the whole heat

power exchanged by the air-conditioning plant working step,

M. Ciampi et al. / International Journal of Thermal Sciences 43 (2004) 417-429

The zeroth-order moment represents the energy supplied
by the air-conditioning plant in response to the external
thermal excitation:

(e.¢]

mo= / Q(r)dr
0
From the first-order moment we obtain the quantity

_ Jo t00dr  my
Joo Q) dr

which can be read as the time barycentre of the power sup-
plied by the plant, or rather as the mean value obtained
by using as weighting function the quanti®(r)/mo; (t)
guantifies the “time lag” between the external thermal exci-
tation starting (at the instant= 0) and the plant working
step (see Fig. 1).

In the same way, from the second-order moment we

(1)

_mo

the time lag and the length of such working. For this purpose obtain the quantitynz/mo, which can be read as the mean
it is not necessary to know the inverse Laplace transform of value of the square of the plant response time. It follows that

£(Q); if we know the Laplace transform(E) of the function
Y (¢), itis possible to obtain directly the “moments” bf?),
that is to say the quantity:

(0.¢]
mj =/th(t)dt with j =0,1,2,...
0

From Eq. (7), differentiating with respect towe obtain:

((VEY
mo=£(Y);—0 mj = (-1’ <%)s=0

forj >0 (10)

If we identify the functionY (zr) with the time response
Q(t) of the air-conditioning plant, whose normalized trend
is reported in Fig. 1 (see Section 4) the zeroth-ordey)(
the first-ordenm1) and the second-ordér>) moments are

particularly important. These moments show the physical

meaning as follows.

i
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Fig. 1. Behaviour of the plant normalized respogse) varying with time:
(t) temporal barycentreAr average time Iengthr,0 instant to which the
function ¢ (¢) reaches its maximum value.

the average time length¢ of the plant working step can be
expressed, as standard deviation obtained using as weighting
function Q(¢)/mg, by the following relation (see Fig. 1):

_Jo G =20 di  momp —m?

Joo 0@ dt m3
In order to calculate the moments physically relevant of
Q(), it is sufficient to know, from Eqg. (10), a series
expansion, truncated up to terms iR, of the Laplace
transform (9); in other words the coefficienfs and f> of

the expansion of the elemeft of the transmission matrix
have to be known:

F(s)=r+ fis + fas® + O(s3) (11)

The lower-order moments of the heat power, from Eq. (10),
result [5,11]:

A2

mo:—e/r, mlz_flle/r2
my=—2L(fZ/r — f2)/r? (12)

In particular, from the first of these relations it follows that
the overall heat quantity, which must be supplied by the plant
depends both on the intensity of the external temperature
impulse itself and on the thermal resistance of the wall; it
is not influenced by the wall heat capacity value and by the
resistance-capacity distribution within the wall itself. On the
contrary, the time lag and the time length, can be calculated
as

(t) =m1/mo= fi/r, A2 = f2/r2 = 2f2/r (13)

Notice that the evaluation oft) and At by Eq. (13) is
exact and does not depend on the fact that the expansion
convergence (11) is more or less rapid. The calculation of
the coefficientsf; and f2 is reported in Appendix A.

By using the expressions gf and f2, see Egs. (A.4)—
(A.5), and the second of the Eq. (13), after some calcula-
tions, we find the following relation:
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n
27,2 2| 2 n2 1 R\ , / whose coefficient®;, according to the method of residues
At = - . — 0. — —R —_— . — 0: N ' K )
' ;CZ [’0’ r =) 3 ’(r 2 >’0’ (r=ri) can be put in the following form:
2 dr
+ R? ﬁ+ﬁ_’Ri Bk=r/<d—) (18)
"\144 12 60 S/ s=by
n , 1 5 The series (17) converges rapidly except for very little time
+ ZC,- Cr |:2,0[2(r —pp) + ER,»Z(r — 1) intervals; it, therefore, provides, together with Eq. (18),
i<k a useful method for the calculation ¢f(z); in all the cases
2 1 22 examined in this paper it has been enough to take into ac-
g R+ 5 RiR; (14) count no more than seven terms in the series expansion (17).
Once the quantitiesf, By) are known, it is possible to
with p, thermal resistance preceding théh layer mid- calculate the moments:
section, see Eq. (A.6). 00 00

The Eq. (14) provides the plant's response time length, [ _ L[
under an impulsive external thermal excitation, in case of a "/ = Q) dr = - ]! ¢ () dr
real multi-layered wall. 0 0

By,
——( LY
(]) ek=l 00 (_bk)j+l
4. Temporal behaviour of the air-conditioning plant

response
5. Maximum time length criterion
In many cases it is important to determine the temporal
behaviour of the heat flux2(¢), which must be supplied In order to investigate the maximum length criterion,
by the plant: in particular, it is necessary if the maximum it is convenient to use a simple lumped-parameter model.
value of the heat power is to be calculated. In these casesOther authors [19,20] describe the possibility to approx-
performing the inversion of the Laplace transform, from imate the behaviour of building envelopes with lumped-

Eq. (9) it follows: parameter models. A structure made of a sequence of purely
resistive and purely capacitive layers can approximate any

o) = _k .£—1<L> __L Y0 (15) distributed-parameter wall, either homogeneous or multi-

r F r layered. The use of an analysis based on a lumped-parameter

where, from Eq. (9), the functiop(r) is given by: mogel does not affect the generality of the results of this
study.

o) = El[i} We can subdivide the wall into n purely capacitive layers,

F with heat capacity;, and inton + 1 purely resistive layers,

with thermal resistance;; the wall structure, resulting

The functiong (¢) is always positive; in Fig. 1 is shown the X X )
with 2n + 1 layers, can be represented using the following

behaviour ofp as a function of the time.

For the first of the Eq. (12) it results: scheme:
00 [interior (r) (cn) (rn—1) - - - (r1) (c1) (ro) [exterion (19)
/¢(t)dt=1 (16) where the resistances and r, are to be assumed as
0 comprehensive of the wall inner and outer surface thermal

. . ones. Total thermal resistance and heat capacity:
while the quantity Makp/r) measures the peak value of

Q(r) whenl, = 1 K-s. Owing to the proportionality between " "
Q andg, pointed out by Eq. (15), the quantitiés andAr, = ZVS’ €= ZCS
defined in Section 3, can be obviously visualized in the graph s=1
¢ =¢@), Fig. 1. are kept constant.

The functionr/ F(s) shows a discrete infinity of simple, Analogous relations concerning a lumped-parameter wall
generally distinct, poles all situated on the negative semi- With the scheme (19) can be obtained, as a peculiar case,
axis OfS, solutions of the equatioﬁ(s) =0; these So|utionS, from the relations in Section 3. By USing the expreSSionS of
all negative, are here indicated by and ordered in  Jf1andf2, see Eq. (A.8), the second of the Egs. (13) yields:

s=0

decreasing order with the indeéx(--- < by < --- < b2 < n ) n
by <0). r2AP = [eipi(r — )] +2) cickp?(r — p)® (20)
We, therefore, obtain the series [10,11]: i=1 i<k
b(1) = Z By - exp(bit) 17) where p; represents the thermal resistance preceding ther-

T mal capacityy, see Eq. (A.7)(r — px) means the resistance
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following capacitycy and (o; — px) means the resistance be- and the decay constamt characterizing the plant response
tween the two capacities andc. is obtained by solving the equatidf (s) = 0.

From Eqg. (20)At assumes its maximum value if, at the Performing the inversion of Laplace transform indicated
same timef; results to be maximal anfb minimal. In order in Eg. (15) we have [11]:

to have a high value of; (with the same values afandr), 1

iti i i t r rt
all capacities are to be disposed near the mid-plane, so asp;(r) = — exp[——} = exp[—i}
to increase as much as possible their wejglit — p;): this a1 ail ro(r —roc ro(r —ro)c

is maximum forp; = r/2. For this reason, if all capacity which describes an exponential decay and shows its highest
is lumped in only one layerf; appears to be the maximum  value Max¢1) = ¢1(0) = 1/a; (for t = 0). Varyingrg (0 <
possible and result§ = cr?/4; at the same time; is equal ro < r), the decay constani assumes its highest valug =

to zero and thus assumes the minimum possible value. Inzg/4 whenrg = r/2 (symmetrical wall); in these conditions
more formal terms, this condition can be realized by using the heat power required from the plant shows the minimum
a symmetrical structure with = 1 such as the scheme (4), peak power value and we have:

putting, for instance:

4

min| Max ] = — 23
ro=r1=r/2, c1=c (ro) [ ) @0 70 3)
rr, =0, k=0 (withk>1) Thus, when we restrict toa = 1, the minimum peak power

criterion requires the choice of a symmetrical wall, made of a

capacitive layer disposed between two equal resistive layers,

which coincides with the scheme (4).

(21) In case of a generic n thE, is an-degree polynomial,
whose coefficients are positive and depend on the resistance

In such conditions, also the time lag@) results to be  and capacity elements of the scheme (19); if at least one

maximum and coincides just with the time length provided of these elements is null, the polynomial assumes a degree

by Eq. (21). We can conclude that, in order to maximize the smaller than:, showing that the investigated structure can

average time lengtiaz of the heat power supplied by the be reduced to a lower degree. In this polynomial the zeroth-

plant, it is convenient to realize a symmetrical three-layered degree coefficient equals the highest-degree one is the

wall (n = 1), by disposing all heat capacity between two product of all 2 + 1 resistance and capacity elements

equal resistive layers. Such a wall (see Section 2) results tocomposing the examined structure. Al (s) = 0 equation

be optimal even in order to minimize the air-conditioning roots result to be real and negative and the funcfip(y)

plant working, by low values of, in case of sinusoidal  can be explicated in the following form:

external temperature fluctuation.

The average time length of the plant working step in optimal
conditions results:

Atmax= ZTO

Fu(s) =r(L+aws)(A+azs)--- (1+ays)

which generalizes the Eq. (22). The value of the decay
6. Minimum peak power criterion constantsa; can be obtained from the rootg of the
F(s) = 0 equationa; = —1/si; each of these time constants
Also in this case it is convenient to use the lumped- is positive and smaller thang. These values will be
parameter scheme (19), examining separately the wallsassumed to be ordered in decreasing order> a; >
characterized by various. In this case every single layer a3 > ---. Supposingy as distinct values, the inverse Laplace

in the scheme (19) is characterized by the matrixes transformg, of F,, can be expressed in the following form:
1 rs> ( 1 0) t _
, () = Aral2expl —— | with
(o 1 ses 1 $n (1) k;n Ky P[ ak}

according to whether it is a resistive or a capacitive one. 1
Obviously, the simplest interesting structure with the 4, = [ l_[ (ax —ai)} (24)
scheme (19) is the one characterizediby 1; in this case 1otk

the investigated wall results to be three-layered with the =t

following scheme: By n = 2 the scheme (19) describes a five-layered wall:
[interior](r1) (c1) (ro)[exteriof [interior](r2) (c2) (r1) (c1) (ro) [exteriof

The element; of the wall transmission matrix with = 1, In this case the elemerfi, of the transmission matrid/
results to be: with n = 2, turns out to be a second-degree polynomial:
Fi=r+ro(r —ro)cs =r(1+as) Fa=r+[c1ro(r1 +r2) + c2(ro+r)rz] - s

. ro
with a1 = - (r — ro)c (22) + rociricars - 52
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with: ro + r1 4+ r2 = r andcy + c2 = ¢. From Eq. (24), by
n =2, we obtain:

ba(t) = [exp(—t/a1) — exp(—t/az)] (25)

ayp—az

where the two decay constants are deduced from the solu-

tions (s1, s2) of the second-degree equatid®(s) = 0, such

as
a1 =—1/s1, az=-1/s2

The functiong (¢) reaches its maximum valu@:

1 as ai/(a1—az) ar az/(a1—az)
¢2 [(—) - (26)
al —az al ail

at the instant?:
In( &

az
If we aim at determining the structure with= 2 which
minimizes ¢‘2), it is enough to just consider symmetrical

Q= 12 (27)
ai—az

423

B

Fig. 2. The functiong, versusz/tg in the symmetrical case = 2 with
different r1/r values:ri/r =0, ri/r =0.2032,r1/r =1/3, r1/r = 1/2

structures, according to what is suggested by the symmetricandr1/r =0.7.

property of the matrix elemenft, pointed out in Section 2.
Considering a symmetrical structure of the type (5), with
parameter; (0 < r1 < r), the following expressions are
obtained for the decay constants.

(r—riec, (28)

ay = ar =

T4 T4
Substituting Eq. (28) into Egs. (25), (26) and (27) we obtain:

P A A .
92(1) = c(r — rl)z[ p(_c(r — r1)>

4rt

B eXp(‘ cri(r —ro) )}
" r1/(r—r1) " r/(r—ri)
-G

As ry varies,¢9 assumes its minimum value by =
0.2032, where it results;bg = 3.344/19. We can conclude
that, for the case = 2, the minimum peak power criterion
involves that:
min[Max(gbz)] =~ 3.344/1
(rok @
obtainable by a symmetrical five-layered wall with the
scheme (5) withr; = 0.2032; this scheme turns out to be,
obviously, favourable compared to that relatingite- 1 for
which the Eq. (23) is valid.

As rp varies, such minimum appears to be not very
marked (‘flat’); by r1 — r we have¢9 — oo, while by
r1 — 0 we havep = 4/7o, according to Eqg. (23). E.g., by
r1 = r/3 we havepy = 3.464/ 1o, while byr; = r/2 we have
¢g = 4/1p. If we accept the criterion according to which an

C
(r —ryri-
p

4r
3

=

(29)

Eq. (29) can be admitted, the entire intervakG < r/2
turns out to be acceptable.

In order to illustrate this situation, in Fig. 2 is shown,
in the symmetrical case with = 2, the behaviour of the
function ¢» versust/tg, for: r1/r = 0, r1/r = 0.2032,
r1/r=1/3,r1/r =1/2 andr1/r =0.7.

By n = 3 the scheme (19) describes a seven-layered wall:

[interior] (r3) (c3) (r2) (c2) (r1) (c1) (ro)[exteriof

In this case the formulae result to be more difficult, so a
numerical approach is to be preferred. As well as for the case
n = 2, it is enough to restrict the analysis to symmetrical
structures, with the resistaneg(0 < r1 < r/2) and the mid-
centre plane capacity (0 < ¢ < ¢) assumed as parameters.
So we have:

,
r0=r3=<§—rl>, r2 =r1, c1=c3=

On the basis of the values of such parameters the three
time constantsas, az, az) can be calculated by solving the
third-degree equatiofz(s) = 0, and the temporal response
¢3(t) can be determined by the Eqg. (24). By solving the
equation(dgsz/dr) = 0 the timetg can be individuated, so
¢3(t) results to be maximum and the maximum vahz%

is obtained as¢J = ¢3(13). The numerical analysis shows
that the minimum height peak conditions are achieved by
az = 0 and, therefore, coincide with those studied in the case
of n = 2; so we have:

min
(r1,¢2)

[I\/(ng(q)g)] ~ 3.344/1

These considerations can be generalized by3 and lead

increase by 20% compared to the optimal value given by to the conclusion that the plant peak power reaches its lowest
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value for a structure with = 2 such as the previous one, and
we have:

min| Ma =3.344
nin Max(gn) | = 3.344/0
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2
[F2=r24 (f2- 2rf2)% +0(c?)
0

- r2|:1 + <%)2} +0(c%)

We can, therefore, state that, in order to minimize the peakiy which Eq. (30) has been used. This shows thedn also

power required from the plant in its working step, the

best possible wall with the scheme (19) results to be the

symmetrical, five-layered one & 2) with r1/r = 0.2032,

obtained by disposing in the mid-plane resistive layer about

20% of the total thermal resistanee This wall will be,
hereinafter, marked as

7. The coefficient of performance

In the previous sections two different criteria, able to

be defined by the relation:

JIF/r2=1

For this reason, in case of sinusoidal external thermal fluc-
tuations and by low values of the search for the maximum
value of the coefficient of performaneallows to individu-

ate the wall configuration which maximizeg| by reducing

to the minimum the plant intervention (see Section 2). The
coefficient of performance fully characterizes the behaviour
of a wall, even in case of sinusoidal thermal fluctuations by

e=Ilim@4/o)-

o—0

make easier the air-conditioning plant working, have been low values ofc . In fact, in most cases of practical interest,

taken into account: to maximize the plant working step
time length Ar, or to minimize the peak power of this
working step. The optimal wall, determined with the first
of these criteria, coincides with the optimal one obtained
for low values ofo in case of sinusoidal external thermal
fluctuations. This involves that the maximum time length
criterion is to be preferred; on the other hand, if we
compare different structures of real walls (with distributed
parameters), the two criteria provide similar results.
For this reason we introduce a parameter defined as:

&= 4ﬂ
70
It is a coefficient of performancéor the distribution of
resistance and capacity within a wall and it can quantify
the deviation of a real distributed-parameter wall from the
behaviour of the lumped-parameter model.
For a multi-layered wall, the parametercan be calcu-
lated by Eq. (14) or, if the wall can be approximated to

4
—JfE-2rfo (30)
rTo

the values ot are low and just in case of massive and very
well-insulated walls these values can result to be higher than
o1 (see Section 2). The coefficient of performance turns out
to be useful also in case of thermal excitations with complex
spectrum, provided that there are not high frequency com-
ponents with particularly remarkable intensity; in all these
cases the maximization af represents very well the wall
optimization [15-17].

8. Examples of walls commonly used in building

Multi-layered walls are generally used in the building
envelope. Materials used in the realization of such walls are
referable to two categories: the first type with essentially
resistive thermal propertief @nd the other with essentially
capacitive thermal properties)(

Due to the practical importance of three-layered struc-
tures, it seems interesting to examine all possible three-

a lumped-parameter model, by Eq. (20). This parameter is jayered two-component walls realized with given quantities
a dimensionless quantity, able to assume numerical valuesof materialsl andL. We can suppose of shifting a slice of

from 0 to 1; in particular, it assumes its maximum value

materiall inside a slab of material, by introducing the di-

e=1 _in the optimal case (_)f a symmetrical three-layered mensionless parameter0 < x < 1) as the portion of mate-
wall with the scheme (4), as it clearly appears from Eqs. (21) rial L on the wall inner face. We have the following scheme:

and (30).

Neglecting the inner and outer surface thermal resistancedlinterior (Rin) [xL1[11[(1 — x)L ] (Rexo [exteriof

we have:e = 0 for a two-layered wall, with one layer

purely resistive and the other purely capacitive, both in case

of resistive layer on the inner face and on the outer face
e = (2/15+/(10) = 0.422 for a homogeneous wall with
continuous distribution of resistance and capacity.

The coefficient of performance is also related to the plant
response under sinusoidal external thermal fluctuations with

a low value ofo. This response, according to Eq. (3),
is determined by the matrix elemem®. Under such a
sinusoidal fluctuation, we have to pwt= jow = jo/10,
so that the Eq. (11) provides for the'| the following
expansion:

(31)

where the slice of materialshifts from the inside towards
the outside by increasing values of the paramet&y x = 0

' the insulating material is disposed on the wall inner faee (

walls), byx = 0.5 it is disposed in the mid-plane of the wall
between two equal layers of materiafL—I-L walls) and by
x =1 itis disposed on the wall outer face{ walls).

In the same way, we can suppose of making matérial
float into materiall, but it is better to make it move in the
opposite direction, that is to say from the exterior inwards.
In this case we can consider the following scheme:

[interion (Rint) [ (1 — x)1][L1[x1](Rexp[eXteriof (32)
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Table 1
Description of the walls thermal properties used in the calculations
Wall Layers d 0 cp A c 9=rc o =wTg
[cm] [kg-m~3] [kdkg~1.K~1] wW-m—1.k-1 [3-m~2.K ] [h] (24 h period)
A Polyurethanel} 2.9 35 1.60 0035 65000 28.9 b6
Cellular concretel() 12 600 0.88 @0
B Polyurethanel} 4.5 35 1.60 0035 143000 63.6 18
Concrete () 10 1600 0.88 o

where the parameteris the fraction of materialon the wall
outer face.

By x = 0 andx = 1 the insulating material is disposed &
as in the previous casek-{ andL—l), by x = 0.5 material 084
L is disposed in the mid-plane of the wall between two
equal layers of material(I-L—). The schemes (31) and (32)
exhaust all possible cases of three-layered wall. 061

We have considered, as an example, the walEnd B
described in Table 1 and characterized by the same value of |, ¢
total thermal resistance & 1.60 m?-K-W~1), by assuming 041
for the wall inner and outer surface thermal resistances the
reference valueRint = 0.13 and Reyt = 0.04 m?-K-wW—1 b
[EN I1SO 6946/1996]. In Table 1 some important thermal 02
parameters for both walls andB are also shown.

It could be interesting to compare the behaviour of a I
wall with the schemes (31) and (32) to the behaviour of 0 . ; : : .
an ideal three-layered lumped-parameter wall with surface 0 02 04 05 06 08 X !
thermal resistanceRin: and Rey:. In the same way, it could
be interesting to compare the behawo_ur of a wall with the the three-layered wallg and B with a scheme (31), dashed curves, and
schemes (32) and (31) to the behaviour of three or five a scheme (32), continuous curves. The figure also shows the three-layered
layered lumped-parameter walls. lumped-parameter wallp1 andID2.

A wall with the schene (32) in which materiiis purely

resistive and material purely capacitive is defined aB1; By Eq. (34) the maximum value ef(s = 0.299) is obtained
the wall turns out to be, therefore, a lumped-parameter, , ban, — 1.

three-layer one, and can be represented by the scheme It should be noted that for the wall®1 and ID2 the

(19) with n = 1, where resistances have to be meant as .,effiient of performance does not depend on the wall heat
comprehensive of that due to the surface thermal reS'Stancecapacity, but just on the total thermal resistanceafd on

From Eq. (20) wittn = 1 and from Eg. (30) we obtain: the inner and outer surface thermal onBg,{and Rexy).

I

Fig. 3. Variation of the coefficient of performance as a functionx dbr

4 In Fig. 3 the coefficient of performance is shown as a
&= ﬁ[Rim + (1= x)(r = Rint — Rex) ] function of x for the structures with the schemes (31) and
< [Rext+x(" — Rt — Rext)] (33) (32). As clearly shown in Fig. 3 all the walls andB with

a scheme (32) turn out to be better than the ones with a

From Eq. (33) it follows that the maximum value of  scheme (31). The walb1 represented by poir@p; (with
(e =1) is obtained when = 0.554. x = 0.554 ande = 1) is the best one, while the walb2

Analogously, a wall with the scheme (31) in which represented by poifp, (with x = 0.0958 and: = 0.0927)
materiall is purely resistive and materialpurely capacitive is the worst one.
is defined asiD2; the wall turns out to be, therefore, a The best real wall is thé-type one with a structure
lumped-parameter, five-layer one, and can be represented by.orresponding to the scheme (32) wittr 0.55 ande =
the scheme (19) with = 2, where the extreme resistances ¢, = 0.93 (Op), while for the wallA the best structure
coincide with the surface thermal resistances. From Eq. (20)in the scheme (32) is the one with = 0.60 to which

with n = 2 and from Eq. (30) we obtain: corresponds = gpt= 0.75(04).
2 The worst real wall is thes-type one with a structure
o = ARintRext [XZ(r — R‘”t> corresponding to the scheme (32) with 0.28 ande =
r2 Rext 0.16 (Pg), while for the wallA the worst structure in the
o (T — Rext\? 12 scheme (32) is the one with= 0.42 to which corresponds
+1-x) (ﬁ) +2x(l—x)i| (34) e=0.29 (P4).
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It should be noted that for the wahl the coefficient of | Q/l, | P
performancée) 4 varies from 0.7504) to 0.29 ¢ 4) and for N
the wall B the coefficient of performancg)p varies from
0.94 ©p) t0 0.16 fp), see Fig. 3. In other words, the walls
having a high value ofqpt show higher excursions in values 3e-051
of ¢; such walls are better only if well designed.

The curves relating to the schemes (31) and (32) meet
each other both whem = 0 andx = 1. Whenx = 0 the
pointsiy (¢ = 0.47), 15 (¢ = 0.21) andlp (¢ = 0.0975),
corresponding to-L walls, are obtained. On the contrary,

4e-051

2e-051

1e-051
whenx = 1 the points£4 (¢ = 0.56),Ep (¢ = 0.38) andE|p
(¢ = 0.2986), corresponding tio-I walls are obtained.
Very important are_the walls designed in a symmetrical 0 R R SR A A
way (x = 0.5) but with an asymmetry, from a thermal S
point of view, due to the inner and outer surface thermal (@)

resistancesKint # Rext). By x = 0.5 we have symmetrical,
three-layered walls corresponding, in the case of the schemq Qfl, |
(32), to the pointsSip1 (¢ = 0.997), S (¢ = 0.92) and

Sa (e =0.74), I-L- walls and, in the case of the scheme 5, 5
(31), to the pointss’|p2 (¢ = 0.157),S; (¢ = 0.19) ands’,
(¢ = 0.30) (L—I-L walls).

The structure®p1 (x ~ 0.55, ¢ = 1), Op (x ~ 0.55, 26.051
£ =0.93) andO4 (x = 0.60, ¢ = 0.75) represent the best
realizations of the lumped-parameter model, see the scheme
(4); such structures, as it results to be evident from the
graph, are, for practical purposes, well approximated by the
symmetrical ones represented by the podi®, Sg, Sa.

A remarkably important case is represented by the homo- _‘ . , , : =
geneous walls. Notice, on this subject, that materials with L 10000 20000 30000 40000 50000
outstanding mechanical resistance and with low values of ) s
thermal conductivity have been recently introduced into the
building practice. These materials (concrete made of ex- Fig. 4. (a) WallA: variation of |Q/I¢| [W-m~2.K~1.571] as a function
panded clay, pearlite and vermiculite, autoclaved and so on),of time [s] for the walls corresponding to the poinitg, P4, S/, E4,
produced in blocks or panels, make possible the realizationSa @ndO4 shown in Fig. 3; to have a comparison, the behaviour of a
of homogeneous walls with good mechanical and thermal "0modgneous wali,, is also plotted. (b) Walb: variation of |Q/7e|

. . -m~—<.K~+.s7%] as a function of time [s] for the walls corresponding
properties. In case of a homogeneous wall with the refer- 1, e pointsiz, P, S/, Ep, Sp andOp shown in Fig. 3; to have a
ence values for the inner and outer surface thermal reSiStanCQomparison, the behaviour of a homogeneous W, is also plotted.
and with the same total thermal resistamcas the wallsA
andB, we find thate = 0.47, regardless of the value of the [interior](Rint)[1/3]
heat capacity (see Section 7). Homogeneous walls are then .
charactSrized by values of the coefficient of performance x [L/211/31L/2111/3] (Rexy exteriol (Ha)
much lower than those, which can be obtained by using well- [interior] (Rjnt)[21/5]
designed multi-layered walls, with the same :

Some five-layered walls, obtainable by given thickness x [L/211/511L/21121/5](Rexolexterion (K1)
of the two materialsl and L have been examined too. For H1 we find out:e = 0.60 (A walls) ands = 0.68 (B
Among them a certain interest is presented by those, whichwalls); forKy: e = 0.66 (A walls) ands = 0.78 (B walls).
approximate the following symmetrical lumped-parameter ~ For all the structures being investigated the temporal
walls: trends of the plant response have been determined carrying

out the calculations using the software MAPLE according
e H (see Section 2), represented by the scheme (5) withto the method indicated in Section 4, i.e., solving the

Pg

1e-057

ri~r/3, equationF'(s) = 0 and using Egs. (17), (18). In Fig. 4(a)
e K (see Section 6) represented by the scheme (5) with relating to walla, the variation of 9 /1| [W-m~2.K~1.s71]
r1 =0.2032 ~ r/5. as a function of the time [s] is shown for the structures

corresponding to the points, P4, S/, Ea, Sa and Oy
The simplest realization is represented respectively by the of Fig. 3. In the same figure the variation @/1.| for a
following schemes: homogeneous walM 4, with the reference values for inner
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and outer surface thermal resistances and with the samd @/l |

thermal resistance and capacity as wallis also shown.
In Fig. 4(b), relating to walB, the same quantity is shown
for the structures corresponding to the poings Pg, S'y,
Ep, Sp andOp of Fig. 3 and for the homogeneous wall,
Mg, with the reference values for inner and outer surface
thermal resistances and with the same thermal resistance an
capacity as walB.

Since all the considered walls are characterized by the

same thermal resistance value, in any case the same energ
is required from the plant and therefore the area subtended

by the curves results to be identical and, for the Eqgs. (15),
(16), equal to 1r = 0.625 [W-m~2.K~1].

In Fig. 4(a) and (b), the curves4 andSp result to be
very close to the curves, andOg; S/, also is very near to
the P4, while you can notice a difference betwesf and
P, according to the above-remarked fact that the higher is
the value ok qpt, the more evident result to be the differences
among the various walls. We can notice that the curves, with
the exception of that relating to the waj}, are ordered in
the direction of the decreasing coefficient of performance:
as the coefficient of performance decreases, the peak powe
required from the plant during its intervention increases. The
differences between the results of the two distinct criteria
based on the impulse length and on its peak value tend to
converge, and the lower is the valuesgft, the more narrow
such convergence becomes.

In any case, the usual walls, in particular the homoge-
neous onesM4, M), the two-layered ones with the insu-
lating material disposed on the outsidg,( Eg) or with the
insulating material disposed on the wall inner fatg (z),
and the three-layered ones with the insulating material dis-
posed in the mid-plane of the walg(, S%), result to be
worse than the optimal ones §, Op).

In Fig. 5(a) and (b) the variation ofQ/1,| is plotted
versus the time (s) for the five-layered structungs, (K1);
the behaviour of the homogeneous wall)(and of the
optimal three-layered onej is also shown. The Fig. 5(a)
concerns the wal\ and the Fig. 5(b) the waB.

Itis interesting to notice that, in the case of the vialthe
peak value oK is a little lower than the one @, according
to the minimum peak criterion; on the contrary, for the
wall A, provided with a lowekopt, the peak value oK is
slightly higher than that o®. In all the other cases plotted,
the structures with higher show lower peaks. Therefore,
also the investigation of the temporal trends of five-layered
structures shows how the two criteria, based on the length
and the peak value, give almost coincident directions for the
wall A, and quite similar ones for the wad|; this confirms
that the lower igopt, the less the two criteria differ.

9. Conclusions

The problem concerning the determination of the build-
ing envelope structure able to facilitate the air-conditioning
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Fig. 5. (a) WallA: variation of|Q/I.| [W-m~2.K~1] as a function of time
[s] for the five-layered wall$i, K1; to have a comparison, the behaviour of
the homogeneous wallj, and of the optimal three-layered wall, is also
plotted. (b) WallB: variation of|@/I.| [W-m~2.K~1] as a function of time
[s] for the five-layered wall$iq, K1; to have a comparison, the behaviour of
the homogeneous wall, and of the optimal three-layered wall, is also
plotted.

plant working step, in order to keep the indoor air tempera-
ture constant against impulsive external temperature excita-
tions, can be investigated following two different optimiza-
tion criteria: maximize the average time length or rather min-
imize the plant peak power.

On the basis of the first criterion, the optimal wall
coincides with the symmetrical three-layered one, able to
minimize the air-conditioning plant working step in case of
sinusoidal external thermal fluctuations of low frequency.
For such awall, realized disposing all available heat capacity
between two equal resistive layers, the average time length
of the plant working step results to be equal to a quarter of
the wall time constant.

On the basis of the second criterion, the optimal wall has
turned out to be the symmetrical five-layered one with two
capacitive layers and three resistive, realized by disposing
in the mid-plane resistive layer the 20.32% of the wall
total thermal resistance; in this case the peak power of the
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plant working step is inversely proportional to the wall heat =Ry [1+ 1Rkas + —(RkaS) } (53)
capacity. For such a wall, if its mid-plane layer resistance is 6 120
reduced, the peak power increases a little; so that the optimal Ces 1
wall, determined on the basis of the first criterion, shows G, = /—smh(‘/Rkas) Crs [l+ —Rkasj| +O(s3)
a good performance on the basis of the second criterion as Ri 6
well. where series expansions truncated up to the second degree
Under the considered conditions, the optimal structure for terms in s are also reported.
an external wall can be stated to be the symmetrical three-  For the scheme (1) the layers with= 0 and withk =
layered one, obtained disposing all available heat capacityN + 1 (wall inner and outer surface thermal resistances)
between two equal resistive layers. Notice that such a wall isare characterized bye = H = 1, G = 0 and F equal,
very different from those of common use in building. All the  respectively, toRex; and to Rint. More generally, once the
usual walls, in particular the single-layered homogeneous expansion of a matrix relating to a generic sequencs of
ones, the two-layered ones with the insulating material homogeneous layers has been given, it is easy to find the
disposed on the wall outer or inner face, as well as the three-expansion of the matrix (whose elements are marked with an
layered ones with the insulating material disposed in the overbar) for a sequence 8f+ 1 layers. This can be obtained
mid-plane of the wall, have resulted to be sensibly worse.  writing:
The previous analysis allows thg_lntroductlon ofanew  x F Evii Fyi E F
parametee (0 < ¢ < 1), calledcoefficient of performange (— ﬁ) = ( ) (G H)
whose value quantifies the suitability of the distribution of
resistive and capacitive layers in a multi-layer wall, within @nd neglecting terms whose degree is higher than the

problems concerning thermal building-plant interaction. ~ Sécond. With some calculations we obtain the following
expressions [5,11]:

Gny1 Hyqa
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In a way similar to that used in Eq. (11), it is possible to

expand, up to second-degree terms, the elemgénts and 1
H of the transmission matrix: 24RN+1CN+1 r+gRyia

E F c=c+Cns

G H 1 1
We obtain: g2=g2+Cny1e1+ ERN+1CN+1 (c + §CN+1>
E=1+e1s +e2s?+O(s® A.l - 1

. ) 3 ( ) (A1) hi=h1+Cns1|7r+ zRn+1

G = cs + gas? + O(s°) (A.2) 2
H =1+ hys + has? + O(s®) (A.3)

- 1
o . _ h2=h2+ -Rn+1Cny1h1+ Cni1f1
The elements of the transmission matrix for a generic layer 2

k, with thermal resistanc®; and heat capacit¢;, can be

1 2 1
. —R C -R
given in hyperbolic functions form: + 6 Nt N+1(r + 4 N“)

hich can be used as recursive relations for the calculation
Ex = Hy = cosh(y/R.C w .
b g 1 i( klks) of all coefficients in Eqgs. (11), (A.1)—(A.3). In particular, for
=1+ ZRiCis + — (RkCis)® + o(s3) th_e coefficientsfy and f> of th_e expansion (11) for a wall
2 24 with the scheme (1), we obtain:

/ 1
Fi = % sinh(v/RiCis ) fi= Z C [pk —n) -7 2R,§} (A.4)
k
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